Mark Scheme

4762	Mark	Scheme Jar	nynath
Q 1	m	rk	1SCIO
(i) $10 \text{ m s}^{-10 \text{ m s}^{$	29.5 kg		W. INJINATISCIOL
$10 \times 0.5 = 0.5v_2 + 29.5v_3$			
$\frac{v_1 - v_2}{0 - 10} = -0.8$	M		
$v_1 = 0.3 \text{ so } V_1 = 0.3$ $v_2 = -7.7 \text{ so } V_2 = 7.7$ in opposite to original	m s ⁻¹ A direction F	1 Speed. Accept ±.	7
(ii) (A) $10 \times 0.5 = 30V$	M		
so $V = \frac{1}{6}$	А	Clearly shown. Accept decimal equivalence. Acc	cept
		no direction.	
			3
(B) Same velocity No force on sledge in c	lirection of motion E	1 1	
(iii)			2
before	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	
$2 \times 40 = 0.5u + 39.5V$ u - V = 10 Hence $V = 1.875$	M A B A	 Any form May be seen on the diagram. 	
	1		5

Mark Scheme

4762	

476	2 M a	ark Sc	heme	Jan sub
Q 2		mark	comment	sub
(i)	$X = R\cos 30$ (1) $Y + R\sin 30 = L$ (2)	B1 M1 A1	Attempt at resolution	3
(ii)	ac moments about A $R - 2L = 0$	B1		
	Subst in (1) and (2)	M1	Subst their $R = 2L$ into their (1) or (2)	
	$X = 2L\frac{\sqrt{3}}{2}$ so $X = \sqrt{3}L$	E1	Clearly shown	
	$Y + 2L \times \frac{1}{2} = L$ so $Y + L = L$ and $Y = 0$	E1	Clearly shown	4
(iii)	(Below all are taken as tensions e. g. T_{AB} in AB)	B1 B1	Attempt at all forces (allow one omitted) Correct. Accept internal forces set as tensions or thrusts or a mix	2
(iv)	$\downarrow A T_{AD} \cos 30 \ (-Y) = 0$ so $T_{AD} = 0$	M1 E1	Vert equilibrium at A attempted. $Y = 0$ need not be explicit	2
(v)	Consider the equilibrium at pin-joints $A \rightarrow T_{AB} - X = 0$ so $T_{AB} = \sqrt{3}L$ (T)	M1 B1	At least one relevant equilib attempted (T) not required	
	$C \downarrow L + T_{CE} \cos 30 = 0$ so $T_{CE} = \frac{-2L}{\sqrt{3}}$ so $\frac{2L}{\sqrt{3}} \left(= \frac{2L\sqrt{3}}{3} \right)$ (C) $C \leftarrow T_{BC} + T_{CE} \cos 60 = 0$	B1 B1 B1	Or equiv from their diagram Accept any form following from their equation. (C) not required. Or equiv from their diagram	
	so $T_{\rm BC} = -\left(-\frac{2\sqrt{3}L}{3}\right) \times \frac{1}{2} = \frac{\sqrt{3}L}{3}$ (T)	B1 F1	FT their T_{CE} or equiv but do not condone inconsistent signs even if right answer obtained. (T) not required. T and C consistent with their answers and their diagram	7
(vi)	↓ B $T_{\rm BD} \cos 30 + T_{\rm BE} \cos 30 = 0$ so $T_{\rm BD} = -T_{\rm BE}$ so mag equal and opp sense	M1 E1	Resolve vert at B A statement required	2
		20		

Mark Scheme

476	32 Ma	ark Scl	heme Jan	Marins City
Q 3		mark		sub U.
(i)	(10, 2, 2.5)	B1		1
(ii)	By symmetry $\overline{x} = 10,$ $\overline{y} = 2$ $(240 + 80)\overline{z} = 80 \times 0 + 240 \times 2.5$ so $\overline{z} = 1.875$	B1 B1 B1 M1 A1	Total mass correct Method for c.m. Clearly shown	5
(iii)	$\overline{x} = 10 \text{ by symmetry}$ $(320 + 80) \begin{pmatrix} \overline{x} \\ \overline{y} \\ \overline{z} \end{pmatrix} = 320 \begin{pmatrix} 10 \\ 2 \\ 1.875 \end{pmatrix} + 80 \begin{pmatrix} 10 \\ 4 \\ 3 \end{pmatrix}$ $\overline{y} = 2.4$ $\overline{z} = 2.1$	E1 M1 B1 E1 E1 E1	Could be derived Method for c.m. y coord c.m. of lid z coord c.m. of lid shown shown	
(iv)	c.w moments about X $40 \times 0.024 \cos 30 - 40 \times 0.021 \sin 30$ = 0.41138 so 0.411 N m (3 s. f.)	B1 B1 B1 E1	Award for correct use of dimensions 2.1 and 2.4 or equivalent 1 st term o.e. (allow use of 2.4 and 2.1) 2 nd term o.e. (allow use of 2.4 and 2.1) Shown [Perpendicular method: M1 Complete method: A1 Correct lengths and angles E1 Shown]	6
(v)	0.41138 0.05P = 0 P = 8.22768 so 8.23 (3 s. f.)	M1 A1	Allow use of 5 Allow if cm used consistently	
		18		2

	שלי Jan			
	-4	r.n		
,	Jan	, ⁽⁾	n	

Л

47	762	Mark So	Scheme Jan Jan Must have attempt at <i>R</i> with <i>mg</i> resolved	mathsci
Q 4		mark		sub
(i)	$F_{\text{max}} = \mu R$ $R = 2g \cos 30$ so $F_{\text{max}} = 0.75 \times 2 \times 9.8 \times \cos 30 = 12.730$	M1 B1	Must have attempt at <i>R</i> with <i>mg</i> resolved	
	so 12.7 N (3 s. f.)	A1	[Award 2/3 retrospectively for limiting friction seen below]	
	either Weight cpt down plane is 2gsin 30 = 9.8 N so no as 9.8 < 12.7 or	B 1 E1	The inequality must be properly justified	
	Slides if $\mu < \tan 30$ But $0.75 > 0.577$ so no	B1 E1	The inequality must be properly justified	5
(ii) (A)	Increase in GPE is $2 \times 9.8 \times (6 + 4 \sin 30) = 156.8 \text{ J}$	M1 B1	Use of <i>mgh</i> 6 + 4 sin 30	
		A1		3
(B)	WD against friction is $4 \times 0.75 \times 2 \times 9.8 \times \cos 30 = 50.9222$ J	M1 A1	Use of WD = Fd	2
(C)	Power is 10×(156.8 + 50.9222)/60	M1	Use $P = WD/t$	-
	= 34.620 so 34.6 W (3 s. f.)	A1		2
(iii)	$0.5 \times 2 \times 9^2$	M1	Equating KE to GPE and WD term. Allow sign errors and one KE term omitted. Allow 'old' friction as well.	
	$= 2 \times 9.8 \times (6 + x \sin 30) + 0.5 \times 2 \times 4^{2}$	B1	Both KE terms. Allow wrong signs.	
	-90	A1 A1	All correct but allow sign errors	
	so $x = 3.8163$ so 3.82 (3 s. f.)	AI A1	All correct, including signs. cao	
	+	17	+	5